LAPOP Regression Coefficients Graph Pre-Processing
lpr_coef.Rd
This function creates a data frame which can then be input in lapop_coef() for plotting regression coefficients graph using LAPOP formatting.
Usage
lpr_coef(
outcome = NULL,
xvar = NULL,
interact = NULL,
model = "linear",
data = NULL,
estimate = c("coef"),
vlabs = NULL,
omit = NULL,
filesave = NULL,
replace = FALSE,
level = 95
)
Arguments
- outcome
Dependent variable for the svyglm regression model. (e.g., "outcome_name"). Only one variable allowed.
- xvar
Vector of independent variables for the svyglm regression model (e.g., "xvar1+xvar2+xvar3" and so on). Multiple variables are allowed.
- interact
Interaction terms (e.g., "xvar1`*`xvar2 + xvar3`:`xvar4"). Supports `:` and `*` operators for interacting variables. Optional, default is NULL.
- model
Model family object for glm. Default is gaussian regression (i.e., "linear"). For a logit model, use model="binomial"
- data
Survey design data from lpr_data() output.
- estimate
Character. Graph either the coefficients (i.e., `coef`) or the change in probabilities (i.e., `contrast`). Default is "coef."
- vlabs
Character. Rename variable labels to be displayed in the graph produced by lapop_coef(). For instance, vlabs=c("old_varname" = "new_varname").
- omit
Character. Do not display coefficients for these independent variables. Default is to display all variables included in the model. To omit any variables you need to include the raw "varname" in the omit argument.
- filesave
Character. Path and file name with csv extension to save the dataframe output.
- replace
Logical. Replace the dataset output if it already exists. Default is FALSE.
- level
Numeric. Set confidence level in numeric values; default is 95 percent.
Author
Robert Vidigal, robert.vidigal@vanderbilt.edu
Examples
if (FALSE) { # \dontrun{
# Example 1: Linear model using lpr_coef()
lpr_coef(
outcome = "l1",
xvar = "it1+idio2",
data = dataLAPOP,
model = "linear",
est = "coef")} # }
if (FALSE) { # \dontrun{
# Example 2: Logit model using lpr_coef()
lpr_coef(
outcome = "fs2",
xvar = "it1+idio2",
data = dataLAPOP,
model = "binomial",
est = "contrast")} # }
if (FALSE) { # \dontrun{
# Example 3: Interactive model using lpr_coef()
lpr_coef(
outcome = "fs2",
xvar = "it1+idio2",
interact = "it1*idio2",
data = dataLAPOP,
model = "linear",
est = "coef")} # }