LAPOP Time-Series Line Graph Pre-Processing
lpr_ts.RdThis function creates dataframes which can then be input in lapop_ts for comparing values across time with a line graph using LAPOP formatting.
Usage
lpr_ts(
data,
outcome,
rec = c(1, 1),
use_wave = FALSE,
ci_level = 0.95,
mean = FALSE,
filesave = "",
cfmt = "",
ttest = FALSE,
keep_nr = FALSE
)Arguments
- data
A survey object. The data that should be analyzed.
- outcome
Character. Outcome variable of interest to be plotted across time.
- rec
Numeric. The minimum and maximum values of the outcome variable that should be included in the numerator of the percentage. For example, if the variable is on a 1-7 scale and rec is c(5, 7), the function will show the percentage who chose an answer of 5, 6, 7 out of all valid answers. Can also supply one value only, to produce the percentage that chose that value out of all other values. Default: c(1, 1).
- use_wave
Logical. If TRUE, will use "wave" for the x-axis; otherwise, will use "year". Default: FALSE.
- ci_level
Numeric. Confidence interval level for estimates. Default: 0.95
- mean
Logical. If TRUE, will produce the mean of the variable rather than rescaling to percentage. Default: FALSE.
- filesave
Character. Path and file name to save the dataframe as csv.
- cfmt
Character. changes the format of the numbers displayed above the bars. Uses sprintf string formatting syntax. Default is whole numbers for percentages and tenths place for means.
- ttest
Logical. If TRUE, will conduct pairwise t-tests for difference of means between all individual x levels and save them in attr(x, "t_test_results"). Default: FALSE.
- keep_nr
Logical. If TRUE, will convert "don't know" (missing code .a) and "no response" (missing code .b) into valid data (value = 99) and use them in the denominator when calculating percentages. The default is to examine valid responses only. Default: FALSE.
Author
Berta Diaz, berta.diaz.martinez@vanderbilt.edu & Luke Plutowski, luke.plutowski@vanderbilt.edu
Examples
require(lapop); data(ym23)
# Set Survey Context
ym23lpr<-lpr_data(ym23)
# Run lpr_ts
lpr_ts(ym23lpr,
outcome = "ing4",
use_wave = TRUE,
mean = TRUE,
ttest = TRUE)
#> wave prop lb ub proplabel se
#> 8 2018/19 4.753684 4.731888 4.775480 4.8 0.01112058
#> 9 2021 NA NA NA <NA> NA
#> 10 2023 4.756581 4.734816 4.778347 4.8 0.01110472